Discover the magic of the 2689-65-8

As far as I know, this compound(2689-65-8)SDS of cas: 2689-65-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Issled. Termogr. Korroz. called Thermographic study of the reaction of primary aryl amines with 5-halofurfurals, Author is Tovmas’yan, I. K.; Lyutkin, N. I.; Myasnikova, T. P., which mentions a compound: 2689-65-8, SMILESS is IC1=CC=C(O1)C=O, Molecular C5H3IO2, SDS of cas: 2689-65-8.

Thermograms of the reaction of 5-halofurfural with primary aryl amines were studied. The 1st macrostage corresponded to the formation of 5-halofurfurylidenearyl amines, the 2nd stage to N-[5-arylaminofurfurylidene]arylamine. Effect of substitutes in amine and aldehyde components on the 1st and the 2nd reaction stages was comparatively analyzed from the thermogram data.

As far as I know, this compound(2689-65-8)SDS of cas: 2689-65-8 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Why Are Children Getting Addicted To 1569-17-1

As far as I know, this compound(1569-17-1)HPLC of Formula: 1569-17-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of 1,8-naphthyridine homologs and their hydrogenation》. Authors are Ochiai, Eiji; Miyaki, Komei.The article about the compound:4-Methyl-1,8-naphthyridinecas:1569-17-1,SMILESS:CC1=C2C=CC=NC2=NC=C1).HPLC of Formula: 1569-17-1. Through the article, more information about this compound (cas:1569-17-1) is conveyed.

In earlier work (CA 33:2525.5) it was found that Me 1,4-dihydroxy-2,5-naphthyridine-3-carboxylate (C. A. numbering, 5,8-dihydroxy-1,6-naphthyridine-7-carboxylate) and the 1-Cl compound on catalytic hydrogenation take up H only on the nonsubstituted pyridine ring. In continuation of this work, 2,4-dimethyl- (I) and 4-methyl-1,8-naphthyridine (II) have been synthesized and a similar phenomenon on hydrogenation has been observed. In the meantime some other 1,8-naphthyridines described in this paper have been prepared by analogous methods by Mangini (preceding abstract). 7-Amino derivative of I (0.5 g. from 2 g. 2,6-diaminopyridine, 2 g. CH2Ac2 and 1 g. fused ZnCl2 heated 3 hrs. at 120-30°), m. 220° (Ac derivative, pale yellow, m. 300°), converted by diazotization in 40% H2SO4 into the 7-HO compound, m. 251°, which, heated 30 min. in a sealed tube at 140° with POCl3, gives the 7-Cl compound, m. 146-7°; this, boiled 30 min. with 20% MeONa in MeOH, gives the 7-MeO compound, m. 65° (picrate, m. 188-9°). Hydrogenation of 1 g. of the HO compound in 20 g. alc. with 1 g. Ni-kieselguhr under 110 atm. of H for 10 hrs. at 170-80° gave, along with 0.6 g. unchanged material, 0.2 g. of a dihydro derivative, C10H12N2O, m. 175-80°. The Cl compound (0.5 g.), shaken in 10% KOH-MeOH with 0.2 g. of 20% Pd-charcoal and H until about 1.2 mols. H had been absorbed, and the product chromatographed in benzene through Al2O3, yielded about 0.05 g. I, m. 85-6° (HCl salt, decomposes 240°; picrate, decomposes 204-6°; methiodide, yellow needles with 1 H2O, m. 93-4; chloroplatinate, I.H2PtCl6, decomposes 242-4°; chloroaurate, decomposes 166-7°). When 0.1 g. of the Cl compound in 10 cc. of 10% KOH-MeOH was hydrogenated to saturation with 0.5 g. of 20% Pd-charcoal it yielded the tetrahydro derivative (III) of I described below. With 1.2 g. of the Cl compound in 20 cc. of 5% KOH-MeOH, 0.5 g. PdO-CaCO3 and a trace of Pd-charcoal, the hydrogenation stopped in 30 min. (about 170 cc. H absorbed) and 0.8 g. I was obtained. Shaken in 10 cc. AcOH with 0.1 g. Pt oxide and H to saturation, 0.5 g. I absorbed about 160 cc. H and yielded 0.5 g. of a tetrahydro derivative (III), m. 118°, giving a pos. Liebermann reaction (picrate, m. 207°; Ac derivative, m. 42-3°); III was also obtained in 0.85-g. yield from 1 g. I in 50 cc. cyclohexane and 5 cc. alc. with 1 g. Raney Ni heated under an initial H pressure of 70 atm. 2 hrs. at 120° and 2 hrs. at 190°. III was unchanged by 4 hrs. treatment in AcOH with Pt oxide and 110 atm. H pressure, at room temperature With Na in boiling alc., however, it yielded the decahydro derivative of I, easily subliming needles, m. 92-3° (di-Ac derivative, thick oil, b0.02 135-45°). 2,7-Dichloro-4-methyl-1,8-naphthyridine in 10% KOH-MeOH hydrogenated with PdO-CaCO3 and a trace of Pd-charcoal gave, together with a mono-Cl compound, C9H7ClN2, m. 104°, chiefly (about 70%) II, b0.05 147-8° (picrate, decomposes 204-5°; perchlorate, m. 180-1°). II (1 g.) in 10 cc. AcOH with 0.5 g. Pt oxide and H yielded a mixture of 2 isomeric tetrahydro derivatives, separated by fractional crystallization from petr. ether: 0.2 g. of a more soluble isomer A (IV), m. 62-3°, giving a pos. Liebermann reaction (Bz derivative, m. 86-7°), and about 0.8 g. of a less soluble isomer B (V), m. 102-3° (picrate, decomposes 248°; Bz derivative, m. 105-6°; nitro derivative, m. 217-18° and giving a pos. Liebermann reaction, prepared by treating the tetrahydride in cold H2SO4 (dry ice-acetone) with fuming HNO3 (d.1.6), pouring on ice, crystallizing from alc., heating the crystals (m. 124-5°) in concentrated H2SO4 at 60°, again pouring on ice, filtering, making alk. with Na2HPO4 and extracting with ether). V is unchanged by hydrogenation in AcOH with PtO and 65 atm. H pressure. With Na in boiling AmOH, both isomers yield the same (racemic) decahydro derivative of II, b0.1 70-80°, m. 87°, gives a pos. Liebermann reaction (picrate, decomposes 210°). The structures of III, IV and V have not been definitely established but the following considerations make it highly probable what they are. The work of earlier investigators on the hydrogenation of quinoline homologs with Ni and H under pressure and with Sn and HCl has shown that Me groups have a disturbing influence on the hydrogenation of the ring half on which they are substituted whereas Na and alc. readily hydrogenate the Me-substituted rings. This disturbing effect of Me groups is ascribed to the inductive effect of the Me group. III is considered to be the 5,6,7,8-tetrahydro compound To further confirm this, III was heated in a little alc. with an excess of ClCH2COMe for 4 hrs. at 100°; the resulting addition product, C15H21ClN22O2, m. 181-2°, allowed to stand 1 day in a little water with 2 drops of 10% Na3CO3, gave, in addition to unchanged III, a resin whose blue Ehrlich reaction pointed to the presence of an indolizine ring. Such a ring can be formed only from a nonhydrogenated 2-methylpyridine. IV is considered to be the 1,2,3,4- and V the 5,6,7,8-tetrahydro compound because the latter is formed in the larger amount; its higher m. p. is also in harmony with such an assumption.

As far as I know, this compound(1569-17-1)HPLC of Formula: 1569-17-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Extracurricular laboratory: Synthetic route of 1569-17-1

As far as I know, this compound(1569-17-1)HPLC of Formula: 1569-17-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Syntheses of naphthyridine derivatives. IV. Syntheses of 1,8-naphthyridines and their hydrogenation, published in 1942, which mentions a compound: 1569-17-1, mainly applied to , HPLC of Formula: 1569-17-1.

Heating 10 g. 2,6-diaminopyridine (I) and 14 g. freshly distilled AcCH2CO2Et at 145-50° 2 h. and taking up with alc. gives 6.5 g. solid, 5 g. of which is taken up in 60 mL. 33% H2SO4, ice-cooled, 3 g. saturated NaNO2 solution added, the mixture let stand 1 h., poured into 150 mL. boiling water, filtered after cooling, the product taken up in hot aqueous NaOH, filtered after cooling, and acidified with HCl, giving 2,7-dihydroxy-4-methyl-1,8-naphthyridine (II), white needles, m. above 350°. I and AcCH2COMe (equimol. amounts) do not condense on heating up to 135°; addition of ZnCl2 and heating at 120-30° 3 h. gives a solid product, which, treated with NaOH, taken up with CHCl3, and extracted with AcOEt, yields 2,4-dimethyl-7-amino-1,8-naphthyridine (III), columns, m. 220°; III with HNO2 gives the 7-HO analog (IV), columns, m. 251°. Heating IV and POCl3 in a sealed tube at 140° 30 min., decomposing with ice, and treating with NaOH to pH 8 gives the 7-Cl analog (V), needles, m. 146-7°. Dehalogenation by catalytic hydrogenation of V in MeOH-KOH with Pd-C gives the 5,6,7,8-tetrahydride (VI), needles, m. 118°, and with Pd-CaCO3 2,4-dimethyl-1,8-naphthyridine (VII), needles, m. 85-6°. Boiling of V with MeONa-MeOH 30 min., removing the MeOH, adding water, taking up with AcOEt, and recrystallizing from petr. ether gives the 7-MeO compound (VIII), prisms, m. 65°; picrate, columns, m. 188-9°. Treating II with POCl3 in a sealed tube at 150° 20 min., pouring on ice, making alk. with NaOH, and recrystallizing from Me2CO give 2,7-dichloro-4-methyl-1,8-naphthyridine (IX), columns, m. 194°. Catalytic dehalogenation of IX with Pd-CaCO3 gives ether-petr. ether insoluble and soluble portions; the insoluble portion gives a mono-Cl derivative, needles, m. 104°; the soluble portion gives 4-methylnaphthyridine (X), b0.05 130-40° (picrate, columns, m. 207°). Tetrahydride of VII, columns, m. 118° (picrate, columns, m. 207°; acetate, white, m. 42-3°). Catalytic reduction of 4-methyl-1,8-naphthyridine with PtO gives a petr. ether-insoluble portion, m. 102-3°, and a soluble portion, m. 62-3°, both tetrahydrides.

As far as I know, this compound(1569-17-1)HPLC of Formula: 1569-17-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

The effect of the change of synthetic route on the product 2689-65-8

This literature about this compound(2689-65-8)Application In Synthesis of 5-Iodo-2-furaldehydehas given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

Popiolek, Lukasz; Biernasiuk, Anna; Paruch, Kinga; Malm, Anna; Wujec, Monika published an article about the compound: 5-Iodo-2-furaldehyde( cas:2689-65-8,SMILESS:IC1=CC=C(O1)C=O ).Application In Synthesis of 5-Iodo-2-furaldehyde. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:2689-65-8) through the article.

Thirteen new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives were synthesized from corresponding hydrazide-hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1H-NMR, 13C-NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4-oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.

This literature about this compound(2689-65-8)Application In Synthesis of 5-Iodo-2-furaldehydehas given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Chemistry Milestones Of 1569-17-1

This literature about this compound(1569-17-1)Recommanded Product: 4-Methyl-1,8-naphthyridinehas given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Sacconi, Luigi; Foa, Marco; Bencini, Elena; Nocci, Roberto; Sabarino, Giampiero published the article 《New catalytic systems for 2,6-dimethylphenol polycondensation》. Keywords: copper complex polymerization catalyst dimethylphenol; imidazole copper polymerization catalyst dimethylphenol; naphthyridine copper polymerization catalyst dimethylphenol; polydimethylphenol copper complex polymerization catalyst.They researched the compound: 4-Methyl-1,8-naphthyridine( cas:1569-17-1 ).Recommanded Product: 4-Methyl-1,8-naphthyridine. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1569-17-1) here.

Catalytic systems based on dimeric Cu complexes with imidazole as bridging unit and on Cu naphthyridine complexes for polymerization of 2,6-dimethylphenol were described. The polymerization conditions, e.g., nature and amount of free amine added, solvent, etc., were studied to get a polymer of suitable mol. weight

This literature about this compound(1569-17-1)Recommanded Product: 4-Methyl-1,8-naphthyridinehas given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Application of 91523-50-1

This literature about this compound(91523-50-1)HPLC of Formula: 91523-50-1has given us a lot of inspiration, and I hope that the research on this compound(6-Hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

HPLC of Formula: 91523-50-1. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 6-Hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid, is researched, Molecular C10H11NO3, CAS is 91523-50-1, about Gas chromatography mass spectrometry analysis and in vitro antibacterial activity of essential oil from Trigonella foenum-graecum. Author is Moniruzzaman; Shahinuzzaman; Haque, Ahsanul; Khatun, Rahima; Yaakob, Zahira.

Objective: To evaluate the antibacterial activity of essential oil from Trigonella foenum-graecum seeds powder, and identify the compounds from the extracted oil. Methods: The seeds powder of Trigonella foenum-graecum was subjected to Clevenger extractor. Seven strains of bacteria were used to test antibacterial activity of the extract The activity against bacteria was tested by disk diffusion method using Whatman Number1 filter paper. Gas chromatog. mass spectrometry anal. was performed with an Agilent7890/5975B-gas chromatog./mass selective detector. Results: The hydrodistillation of seeds powder yielded 0.285% (v/w) of oil. Disk diffusion of the oil showed bactericidal activity against both Gram neg. and Gram pos. bacteria of lasted strains. The inhibition zone ranged from (8 ± 0) mm to (15.0 ± 0.7) mm depending on microbial strains. Gas chromatog. mass spectrometry anal. showed 14 different compounds The total compounds represented 80.96% of the oil. Conclusions: The antibacterial activity is due to the effects of different biol. active compounds present in the extract Identification of the compounds may help to develop new effective antimicrobial agent(s). Further researches on purification, characterization and toxicol. of the active compounds are needed.

This literature about this compound(91523-50-1)HPLC of Formula: 91523-50-1has given us a lot of inspiration, and I hope that the research on this compound(6-Hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

More research is needed about 2689-65-8

This literature about this compound(2689-65-8)Quality Control of 5-Iodo-2-furaldehydehas given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

D’Auria, Maurizio; Vantaggi, Anna published the article 《1H-Indenylfuran and -thiophene derivatives: a new class of singlet-oxygen sensitizers》. Keywords: singlet oxygen sensitizer indenylfuran indenylthiophene; fluorescence indenylfuran indenylthiophene; UV spectra indenylfuran indenylthiophene; triplet energy indenylthiophene.They researched the compound: 5-Iodo-2-furaldehyde( cas:2689-65-8 ).Quality Control of 5-Iodo-2-furaldehyde. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:2689-65-8) here.

Photophys. and photochem. properties of title compounds I (X = O, S; R = H, Me) and II (R = H, inden-2-yl) were studied. All the compounds absorbed UV light at 350-380 nm. The fluorescence spectra of I and II showed bands at 410-470 nm and quantum yields in the range 0.25-0.88. Attempts to calculate the triplet energy failed except for I (X = S, R = Me) and II (R = H), which showed ET = 43-44 kcal mol-1. These compounds are a new class of singlet-oxygen sensitizers. The sensitized reaction of 2,5-dimethylfuran with singlet oxygen was followed. I (X = O, R = H) and II (R = inden-2-yl) are more reactive than α-terthiophene (III), while the other compounds show the same reactivity as III. This behavior can be explained by different intersystem crossing quantum yields. Diazabicyclo[2.2.2]octane is a quencher of singlet oxygen in this reaction. Superoxide ion formation is excluded by photooxidation of α,α’-dimethylstilbene.

This literature about this compound(2689-65-8)Quality Control of 5-Iodo-2-furaldehydehas given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Sources of common compounds: 2689-65-8

This literature about this compound(2689-65-8)Application In Synthesis of 5-Iodo-2-furaldehydehas given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Zhurnal Organicheskoi Khimii called Kinetics and mechanism of the acetalation of 5-substituted furfural, Author is Kul’nevich, V. G.; Zelikman, Z. I.; Pustovarov, V. S., which mentions a compound: 2689-65-8, SMILESS is IC1=CC=C(O1)C=O, Molecular C5H3IO2, Application In Synthesis of 5-Iodo-2-furaldehyde.

The rate of formation of acetals from 5-substituted furfurals (I, R = Er2N, Me2N, Me, H, Cl, Br, I, NO2) and pentaerythritol dichlorohydrin, MeC(CH2OH)3, EtC(CH2OH)3, or BuOH in C6H6 in the presence of KU-2 cation-exchange resin (H form) increased in the stated order of R and alcs. The rate constants correlated with the Brown σn+ constants of R.

This literature about this compound(2689-65-8)Application In Synthesis of 5-Iodo-2-furaldehydehas given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Let`s talk about compounds: 1569-17-1

This literature about this compound(1569-17-1)Category: naphthyridinehas given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Category: naphthyridine. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 4-Methyl-1,8-naphthyridine, is researched, Molecular C9H8N2, CAS is 1569-17-1, about New catalytic systems for 2,6-dimethylphenol polycondensation. Author is Sacconi, Luigi; Foa, Marco; Bencini, Elena; Nocci, Roberto; Sabarino, Giampiero.

Catalytic systems based on dimeric Cu complexes with imidazole as bridging unit and on Cu naphthyridine complexes for polymerization of 2,6-dimethylphenol were described. The polymerization conditions, e.g., nature and amount of free amine added, solvent, etc., were studied to get a polymer of suitable mol. weight

This literature about this compound(1569-17-1)Category: naphthyridinehas given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Decrypt The Mystery Of 2689-65-8

This literature about this compound(2689-65-8)COA of Formula: C5H3IO2has given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

COA of Formula: C5H3IO2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5-Iodo-2-furaldehyde, is researched, Molecular C5H3IO2, CAS is 2689-65-8, about Mechanism and kinetics of furfural oxidation by hydrogen peroxide. Author is Badovskaya, L. A.; Kul’nevich, V. G.; Muzychenko, G. F.; Kaklyugina, T. Ya..

The 1st-order rate constants and activation parameters for oxidation of furfural by H2O2 and the effect of 5-substituents on the rate constant indicated a heterolytic mechanism with loss of rotational and translational degrees of freedom in the transition state.

This literature about this compound(2689-65-8)COA of Formula: C5H3IO2has given us a lot of inspiration, and I hope that the research on this compound(5-Iodo-2-furaldehyde) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem