Something interesting about 16710-11-5

When you point to this article, it is believed that you are also very interested in this compound(16710-11-5)Application of 16710-11-5 and due to space limitations, I can only present the most important information.

Erkin, A. V.; Krutikov, V. I. published the article 《4-arylamino-2-(2-acetoxyethyl)amino-6-methylpyrimidines: Synthesis, deacetylation, and biological activity》. Keywords: ethanolamine acetate arylaminopyrimidinyl tuberculostatic preparation; pyrimidinediamine acetoxyethyl aryl tuberculostatic preparation; deacetylation acetoxyethylaminopyrimidine.They researched the compound: 4-Methyl-6-(methylthio)pyrimidin-2-ol( cas:16710-11-5 ).Application of 16710-11-5. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:16710-11-5) here.

The reaction of 2-(2-acetoxyethyl)amino-4-chloro-6-methylpyrimidine with aromatic amines leads to a series of 4-arylamino-2-(2-acetoxyethyl)amino-6-methylpyrimidines. Deacetylation of these compounds proceeds in both acidic and basic media. Most of the (arylamino)pyrimidines obtained exhibit a pronounced antituberculous effect.

When you point to this article, it is believed that you are also very interested in this compound(16710-11-5)Application of 16710-11-5 and due to space limitations, I can only present the most important information.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Brief introduction of 1569-17-1

When you point to this article, it is believed that you are also very interested in this compound(1569-17-1)COA of Formula: C9H8N2 and due to space limitations, I can only present the most important information.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 4-Methyl-1,8-naphthyridine( cas:1569-17-1 ) is researched.COA of Formula: C9H8N2.Magee, Thomas V.; Ripp, Sharon L.; Li, Bryan; Buzon, Richard A.; Chupak, Lou; Dougherty, Thomas J.; Finegan, Steven M.; Girard, Dennis; Hagen, Anne E.; Falcone, Michael J.; Farley, Kathleen A.; Granskog, Karl; Hardink, Joel R.; Huband, Michael D.; Kamicker, Barbara J.; Kaneko, Takushi; Knickerbocker, Michael J.; Liras, Jennifer L.; Marra, Andrea; Medina, Ivy; Nguyen, Thuy-Trinh; Noe, Mark C.; Obach, R. Scott; O’Donnell, John P.; Penzien, Joseph B.; Reilly, Usa Datta; Schafer, John R.; Shen, Yue; Stone, Gregory G.; Strelevitz, Timothy J.; Sun, Jianmin; Tait-Kamradt, Amelia; Vaz, Alfin D. N.; Whipple, David A.; Widlicka, Daniel W.; Wishka, Donn G.; Wolkowski, Joanna P.; Flanagan, Mark E. published the article 《Discovery of Azetidinyl Ketolides for the Treatment of Susceptible and Multidrug Resistant Community-Acquired Respiratory Tract Infections》 about this compound( cas:1569-17-1 ) in Journal of Medicinal Chemistry. Keywords: antibacterial azetidinyl ketolide preparation structure activity respiratory tract infection; crystal structure antibacterial azetidinyl ketolide preparation structure activity. Let’s learn more about this compound (cas:1569-17-1).

Respiratory tract bacterial strains are becoming increasingly resistant to currently marketed macrolide antibiotics. The current alternative telithromycin (1) from the newer ketolide class of macrolides addresses resistance but is hampered by serious safety concerns, hepatotoxicity in particular. We have discovered a novel series of azetidinyl ketolides that focus on mitigation of hepatotoxicity by minimizing hepatic turnover and time-dependent inactivation of CYP3A isoforms in the liver without compromising the potency and efficacy of 1.

When you point to this article, it is believed that you are also very interested in this compound(1569-17-1)COA of Formula: C9H8N2 and due to space limitations, I can only present the most important information.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Discovery of 91523-50-1

As far as I know, this compound(91523-50-1)Product Details of 91523-50-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 6-Hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid, is researched, Molecular C10H11NO3, CAS is 91523-50-1, about Bioactive constituents of Zanthoxylum rhetsa bark and its cytotoxic potential against B16-F10 melanoma cancer and normal human dermal fibroblast (HDF) cell lines.Product Details of 91523-50-1.

Zanthoxylum rhetsa is an aromatic tree, known vernacularly as “”Indian Prickly Ash””. It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS anal. and isolated two THF lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.

As far as I know, this compound(91523-50-1)Product Details of 91523-50-1 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Chemical Research in 1569-17-1

As far as I know, this compound(1569-17-1)Synthetic Route of C9H8N2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called 1,8-Naphthyridines. I. Derivatives of 2- and 4-methyl-1,8-naphthyridines, published in 1965, which mentions a compound: 1569-17-1, Name is 4-Methyl-1,8-naphthyridine, Molecular C9H8N2, Synthetic Route of C9H8N2.

2-Methyl-1,8-naphthyridine has been prepared by a series of reactions starting with 2-methyl-5-hydroxy-1,8-naphthyridine-6-carboxylic acid and compared with the known 4-methyl-1,8-naphthyridine. The compound previously thought to be 2-methyl-4-hydroxy-7-amino-l,8-naphthyridine has been shown to be 2-hydroxy-4-methyl-7-amino-1,8-naphthyridine by conversion to 4-methyl-1,8-naphthyridine. A new ring closure has furnished 2-methyl-7-amino-1,8-naphthyridine and, in addition, 2-amino-5-methyl-1,8-naphthyridine and 2-methyl-5-amino-1,8-naphthyridine have been prepared by other means.

As far as I know, this compound(1569-17-1)Synthetic Route of C9H8N2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

You Should Know Something about 1569-17-1

As far as I know, this compound(1569-17-1)Name: 4-Methyl-1,8-naphthyridine can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1569-17-1, is researched, SMILESS is CC1=C2C=CC=NC2=NC=C1, Molecular C9H8N2Journal, Chemical & Pharmaceutical Bulletin called Syntheses of nitrogen containing compounds. XVIII. Syntheses of naphthyridines by improved one-step process, Author is Hamada, Yoshiki; Takeuchi, Isao, the main research direction is naphthyridine amino pyridine.Name: 4-Methyl-1,8-naphthyridine.

1,5-Naphthyridine and 1,8-naphthyridines were synthesized by the reaction of 3- or 2-aminopyridines with glycerol, in the presence of Na m-nitrobenzenesulfonate, boric acid, and ferrous sulfate, in sulfuric acid. Application of the same method to 3- and 4-aminoquinolines afforded 4,6-phenanthroline and 5-methyl-1,6-phenanthroline. 1,6-Naphthyridine was obtained in a high yield by the reaction of 4-aminopyridine and glycerol, in the presence of sulfonating mixture, boric acid, and ferrous sulfate.

As far as I know, this compound(1569-17-1)Name: 4-Methyl-1,8-naphthyridine can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Simple exploration of 847818-64-8

As far as I know, this compound(847818-64-8)Computed Properties of C7H13BN2O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Ivachtchenko, Alexandre V.; Kravchenko, Dmitry V.; Zheludeva, Valentina I.; Pershin, Dmitry G. researched the compound: (1-Isobutyl-1H-pyrazol-5-yl)boronic acid( cas:847818-64-8 ).Computed Properties of C7H13BN2O2.They published the article 《Synthesis of pinacol esters of 1-alkyl-1H-pyrazol-5-yl- and 1-alkyl-1H-pyrazol-4-ylboronic acids》 about this compound( cas:847818-64-8 ) in Journal of Heterocyclic Chemistry. Keywords: boronic acid pyrazolyl preparation bromopyrazole pyrazole lithiation borylation; pinacol boronic ester pyrazolyl preparation pyrazole lithiation borylation. We’ll tell you more about this compound (cas:847818-64-8).

1-Substituted pyrazolylboronic acids and their pinacol esters were prepared by lithiation-borylation reaction sequence starting from bromopyrazoles. Alkylation of 4-bromo-1H-pyrazole gave 1-alkyl-4-bromo-1H-pyrazoles, which were lithiated at -80° and borylated with B(OMe)3 to give 1-R-1H-pyrazole-4-boronic acids [4a-g, R = Me, Et, Pr, (CH2)2CHMe2, (CH2)2OMe, (CH2)3NMe2, (CH2)2CH(OEt)2]. Lithiation of 4-bromo-1-(2-dimethylaminoethyl)-1H-pyrazole (2h) gave 5-lithio-derivative, which on borylation afforded 1-R1-4-Br-1H-pyrazole-5-boronic acid (8). Boronic acids 4a-g are unstable and were deborylated slowly due to hydrolysis by traces of water; the stability of boryl derivatives can be greatly enhanced by converting to corresponding pinacol boronates (10a-g). Direct lithiation of 1-R2-1H-pyrazoles by BuLi at -20° afforded 5-lithio-derivatives, which were converted to corresponding 1-R2-1H-pyrazole-5-boronic acids [17a-e; R2 = Me, iBu, Pr, (CH2)2CHMe2, (CH2)2CH(OEt)2] and their pinacol boronates (18a-e, same R2). The key step in the described methodol. is the regioselective lithiation of the pyrazole ring. The synthesized pinacolates are stable under prolonged storage and can be used as convenient reagents in organic synthesis.

As far as I know, this compound(847818-64-8)Computed Properties of C7H13BN2O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Awesome Chemistry Experiments For 1569-17-1

This literature about this compound(1569-17-1)Electric Literature of C9H8N2has given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of 1,8-naphthyridine homologs and their hydrogenation》. Authors are Ochiai, Eiji; Miyaki, Komei.The article about the compound:4-Methyl-1,8-naphthyridinecas:1569-17-1,SMILESS:CC1=C2C=CC=NC2=NC=C1).Electric Literature of C9H8N2. Through the article, more information about this compound (cas:1569-17-1) is conveyed.

In earlier work (CA 33:2525.5) it was found that Me 1,4-dihydroxy-2,5-naphthyridine-3-carboxylate (C. A. numbering, 5,8-dihydroxy-1,6-naphthyridine-7-carboxylate) and the 1-Cl compound on catalytic hydrogenation take up H only on the nonsubstituted pyridine ring. In continuation of this work, 2,4-dimethyl- (I) and 4-methyl-1,8-naphthyridine (II) have been synthesized and a similar phenomenon on hydrogenation has been observed. In the meantime some other 1,8-naphthyridines described in this paper have been prepared by analogous methods by Mangini (preceding abstract). 7-Amino derivative of I (0.5 g. from 2 g. 2,6-diaminopyridine, 2 g. CH2Ac2 and 1 g. fused ZnCl2 heated 3 hrs. at 120-30°), m. 220° (Ac derivative, pale yellow, m. 300°), converted by diazotization in 40% H2SO4 into the 7-HO compound, m. 251°, which, heated 30 min. in a sealed tube at 140° with POCl3, gives the 7-Cl compound, m. 146-7°; this, boiled 30 min. with 20% MeONa in MeOH, gives the 7-MeO compound, m. 65° (picrate, m. 188-9°). Hydrogenation of 1 g. of the HO compound in 20 g. alc. with 1 g. Ni-kieselguhr under 110 atm. of H for 10 hrs. at 170-80° gave, along with 0.6 g. unchanged material, 0.2 g. of a dihydro derivative, C10H12N2O, m. 175-80°. The Cl compound (0.5 g.), shaken in 10% KOH-MeOH with 0.2 g. of 20% Pd-charcoal and H until about 1.2 mols. H had been absorbed, and the product chromatographed in benzene through Al2O3, yielded about 0.05 g. I, m. 85-6° (HCl salt, decomposes 240°; picrate, decomposes 204-6°; methiodide, yellow needles with 1 H2O, m. 93-4; chloroplatinate, I.H2PtCl6, decomposes 242-4°; chloroaurate, decomposes 166-7°). When 0.1 g. of the Cl compound in 10 cc. of 10% KOH-MeOH was hydrogenated to saturation with 0.5 g. of 20% Pd-charcoal it yielded the tetrahydro derivative (III) of I described below. With 1.2 g. of the Cl compound in 20 cc. of 5% KOH-MeOH, 0.5 g. PdO-CaCO3 and a trace of Pd-charcoal, the hydrogenation stopped in 30 min. (about 170 cc. H absorbed) and 0.8 g. I was obtained. Shaken in 10 cc. AcOH with 0.1 g. Pt oxide and H to saturation, 0.5 g. I absorbed about 160 cc. H and yielded 0.5 g. of a tetrahydro derivative (III), m. 118°, giving a pos. Liebermann reaction (picrate, m. 207°; Ac derivative, m. 42-3°); III was also obtained in 0.85-g. yield from 1 g. I in 50 cc. cyclohexane and 5 cc. alc. with 1 g. Raney Ni heated under an initial H pressure of 70 atm. 2 hrs. at 120° and 2 hrs. at 190°. III was unchanged by 4 hrs. treatment in AcOH with Pt oxide and 110 atm. H pressure, at room temperature With Na in boiling alc., however, it yielded the decahydro derivative of I, easily subliming needles, m. 92-3° (di-Ac derivative, thick oil, b0.02 135-45°). 2,7-Dichloro-4-methyl-1,8-naphthyridine in 10% KOH-MeOH hydrogenated with PdO-CaCO3 and a trace of Pd-charcoal gave, together with a mono-Cl compound, C9H7ClN2, m. 104°, chiefly (about 70%) II, b0.05 147-8° (picrate, decomposes 204-5°; perchlorate, m. 180-1°). II (1 g.) in 10 cc. AcOH with 0.5 g. Pt oxide and H yielded a mixture of 2 isomeric tetrahydro derivatives, separated by fractional crystallization from petr. ether: 0.2 g. of a more soluble isomer A (IV), m. 62-3°, giving a pos. Liebermann reaction (Bz derivative, m. 86-7°), and about 0.8 g. of a less soluble isomer B (V), m. 102-3° (picrate, decomposes 248°; Bz derivative, m. 105-6°; nitro derivative, m. 217-18° and giving a pos. Liebermann reaction, prepared by treating the tetrahydride in cold H2SO4 (dry ice-acetone) with fuming HNO3 (d.1.6), pouring on ice, crystallizing from alc., heating the crystals (m. 124-5°) in concentrated H2SO4 at 60°, again pouring on ice, filtering, making alk. with Na2HPO4 and extracting with ether). V is unchanged by hydrogenation in AcOH with PtO and 65 atm. H pressure. With Na in boiling AmOH, both isomers yield the same (racemic) decahydro derivative of II, b0.1 70-80°, m. 87°, gives a pos. Liebermann reaction (picrate, decomposes 210°). The structures of III, IV and V have not been definitely established but the following considerations make it highly probable what they are. The work of earlier investigators on the hydrogenation of quinoline homologs with Ni and H under pressure and with Sn and HCl has shown that Me groups have a disturbing influence on the hydrogenation of the ring half on which they are substituted whereas Na and alc. readily hydrogenate the Me-substituted rings. This disturbing effect of Me groups is ascribed to the inductive effect of the Me group. III is considered to be the 5,6,7,8-tetrahydro compound To further confirm this, III was heated in a little alc. with an excess of ClCH2COMe for 4 hrs. at 100°; the resulting addition product, C15H21ClN22O2, m. 181-2°, allowed to stand 1 day in a little water with 2 drops of 10% Na3CO3, gave, in addition to unchanged III, a resin whose blue Ehrlich reaction pointed to the presence of an indolizine ring. Such a ring can be formed only from a nonhydrogenated 2-methylpyridine. IV is considered to be the 1,2,3,4- and V the 5,6,7,8-tetrahydro compound because the latter is formed in the larger amount; its higher m. p. is also in harmony with such an assumption.

This literature about this compound(1569-17-1)Electric Literature of C9H8N2has given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

Archives for Chemistry Experiments of 1569-17-1

This literature about this compound(1569-17-1)Product Details of 1569-17-1has given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 4-Methyl-1,8-naphthyridine, is researched, Molecular C9H8N2, CAS is 1569-17-1, about Kinetics of quaternization of some naphthyridines and methylnaphthyridines.Product Details of 1569-17-1.

The 2nd order rate constants for the reaction of MeI with some naphthyridines and methylnaphthridines in MeCN were determined by a conductimetric method. The following results were obtained at 24.8° (compound, and rate constant × 10-4 l./mole/sec. given): quinoline, 0.517; isoquinoline, 4.23; 1,5-naphthyridine, 0.232; 1,6-naphthyridine, 1.66; 1,8-naphthyridine, 4.25; 2-methyl-1,8-naphthyridine, 3.61; 3-methyl-1,8-naphthyridine, 5.74; 4-methyl-1,8-naphthyridine, 7.26; and 2,7-dimethyl-1,8-naphthyridine, 1.85. The rate constants are used to deduce the quaternization kinetics of the reactions.

This literature about this compound(1569-17-1)Product Details of 1569-17-1has given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

An update on the compound challenge: 1569-17-1

This literature about this compound(1569-17-1)Application In Synthesis of 4-Methyl-1,8-naphthyridinehas given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1569-17-1, is researched, SMILESS is CC1=C2C=CC=NC2=NC=C1, Molecular C9H8N2Journal, Chemical & Pharmaceutical Bulletin called Syntheses of nitrogen-containing compounds. XVII. Improvement of one-step synthesis of naphthyridine derivatives and their methylation with demethyl sulfoxide in the presence of base, Author is Hamada, Yoshiki; Takeuchi, Isao; Hirota, Minoru, the main research direction is naphthyridine methylation MD calculation.Application In Synthesis of 4-Methyl-1,8-naphthyridine.

1,8-Naphthyridines were synthesized in a high yield by the reaction of 2-aminopyridines with glycerol, in the presence of Na m-nitrobenzenesulfonate, in H2SO4. Methylation of naphthyridines with Me2SO in the presence of NaH or KOBu-tert afforded their mono-Me or di-Me compounds This methylation with methylsulfinyl carbanion was examined from the Hueckel MO method; the calculation agreed with the exptl. results.

This literature about this compound(1569-17-1)Application In Synthesis of 4-Methyl-1,8-naphthyridinehas given us a lot of inspiration, and I hope that the research on this compound(4-Methyl-1,8-naphthyridine) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem

The Best Chemistry compound: 91523-50-1

This literature about this compound(91523-50-1)SDS of cas: 91523-50-1has given us a lot of inspiration, and I hope that the research on this compound(6-Hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Ju, Shuyun; Qian, Mingxin; Xu, Gang; Yang, Lirong; Wu, Jianping published an article about the compound: 6-Hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid( cas:91523-50-1,SMILESS:OC(=O)C1NCCC2=C1C=CC(O)=C2 ).SDS of cas: 91523-50-1. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:91523-50-1) through the article.

Optically pure 1,2,3,4-tetrahydroisoquinoline carboxylic acids constitute an important class of building blocks for the synthesis of natural products and synthetic pharmaceuticals. However, redox deracemization of racemic 1,2,3,4-tetrahydroisoquinoline carboxylic acids as an attractive method is still challenging for the lack of suitable oxidoreductases. Herein, a D-amino acid oxidase from Fusarium solani M-0718 (FsDAAO) with broad substrate scope and excellent enantioselectivity was exploited through genome mining, and applied for the kinetic resolution of a number of racemic 1- and 3-carboxyl substituted tetrahydroisoquinolines to yield the corresponding (S)-enantiomers with excellent enantiomeric excess (ee) values (up to >99%). By using FsDAAO in combination with ammonia-borane in one pot, deracemization of these racemic carboxyl-substituted tetrahydroisoquinolines was achieved with conversions up to >98% and >99% ee. Preparative-scale deracemization of racemic 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid and 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid was also demonstrated with good isolated yields (82% and 73%, resp.) and ee>99%. Our study provides an effective method for the synthesis of enantiomeric pure 1,2,3,4-tetrahydroisoquinoline carboxylic acids. This method is expected to provide access to chiral carboxyl-substituted 1,2,3,4-tetrahydroquinolines and 1,2,3,4-tetrahydro-ss-carbolines.

This literature about this compound(91523-50-1)SDS of cas: 91523-50-1has given us a lot of inspiration, and I hope that the research on this compound(6-Hydroxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
1,8-Naphthyridine – Wikipedia,
1,8-Naphthyridine | C8H6N2 – PubChem